Source code for goflow.models.corson

# @Author: Felix Kramer <kramer>
# @Date:   23-06-2021
# @Email:  kramer@mpi-cbg.de
# @Project: phd_network_remodelling
# @Last modified by:   felix
# @Last modified time: 2022-07-02T13:45:16+02:00

import numpy as np
from dataclasses import dataclass

# custom
# from ..adapter.init_ivp import *
from .murray import murray


[docs]@dataclass class corson(murray): """ The network adaptation model according to Bohn et al, based on flow dissipation-volume minimization with reweightedscales of conductivity costs as published for example: Corson, Fluctuations and Redundancy in Optimal Transport Networks, PRL, 2010\n Hu and Cai, Adaptation and Optimization of Biological Transport Networks, PRL, 2013 The approach assumes a varying sink-source landscape and a time scale separation between this variation and radial adaptation. The system's cost function is given as:\n .. math:: \\Gamma = \\sum_{e}\\left(C_e\\langle \\Delta p_e^2\\rangle + aC_e^{\\gamma}\\right) The system's derived gradient descent dynamics are given as:\n .. math:: \\frac{dr_e}{dt} \\propto \\left[\\alpha_1 \\frac{\\langle \\Delta p_e^2 \\rangle }{L_e^2} \\frac{C_e}{r_e^{4\\gamma}}-\\alpha_0\\right] r_e Attributes: pars (dict):\n The specific model parameters \\alpha_0, \\alpha_1, \\gamma and effective noise strength \\eta. \n ivp_options (dict):\n Information to generate the internal solver_options. Providing t0,t1 number of evaluation and x0.\n model_args (list):\n Model specific paramerets need to evaluate the update rules of the DS \n solver_options (dict):\n Specifying runtime and evaluation marks. \n events (dict):\n Events to consier, here in gernal flatlining events which allow for early termination of stiff simulations. \n null_decimals (in):\n description \n Methods: init() The model post_init function. update_event_func() Update the event function and ensures that solver_options are set. flatlining_default(t, x_0, *args) The default flatlining function for determining the terminal event of the dynamical system. flatlining_dynamic(t, x_0, *args) The dynamic flatlining function for determining the terminal event of the dynamical system. set_model_parameters(model_pars) Set internal model arguments array. set_solver_options(solv_opt) Set internal solver_options and update event function. calc_update_stimuli(t, x_0, *args) The dynamic system's temporal update rule, computing the gradient -dF for dx/dt. calc_cost_stimuli(t, x_0, *args) Computes the dynamic system's Lyapunov function and its gradient. get_stimuli_pars(self, flow, x_0) Update flow & pressure landscapes, recompute conductivity as well as squared quantities. """ def __post_init__(self): self.init() self.model_args = [1., 1., 1, 0.] self.solver_options.update({'events': 'dynamic'}) if self.pars: self.set_model_parameters(self.pars)
[docs] def set_model_parameters(self, model_pars): for k, v in model_pars.items(): if 'alpha_0' == k: self.model_args[0] = v if 'alpha_1' == k: self.model_args[1] = v if 'gamma' == k: self.model_args[2] = v if 'noise' == k: self.model_args[3] = v
[docs] def calc_update_stimuli(self, t, x_0, flow, a_0, a_1, gm, noise): flow.set_effective_source_matrix(noise) cnd, p_sq = self.get_stimuli_pars(flow, x_0) x_gamma = np.power(x_0, 4*gm) s1 = a_1*np.divide(np.multiply(p_sq, cnd), x_gamma) s2 = a_0*np.ones(len(x_0))*gm ds = np.subtract(s1, s2) dx = 4*np.multiply(ds, x_0) return dx
[docs] def calc_cost_stimuli(self, t, x_0, flow, alpha_0, alpha_1, gamma, noise): flow.set_effective_source_matrix(noise) x_sq = np.power(x_0, 2) conductivity, p_sq = self.get_stimuli_pars(flow, x_0) f1 = alpha_1*np.multiply(p_sq, np.power(x_sq, 2)) f2 = alpha_0*np.power(x_sq, 2*gamma) F = np.sum(np.add(f1, f2)) dF = -self.calc_update_stimuli( t, x_0, flow, alpha_0, alpha_1, gamma, noise ) return F, dF
[docs] def get_stimuli_pars(self, flow, x_0): k = flow.circuit.scales['conductance'] c = flow.calc_conductivity_from_cross_section(np.power(x_0, 2), k) p_sq, q_sq = flow.calc_sq_flow_effective(c) return c, p_sq